Scanning Electrochemical Microscopy (SECM)

PRINCIPLE OF SECM

When a micro- or nano-electrode is scanned above a surface at a distance comparable to its dimensions / diffusion layer then, in the presence of an electroactive probe, its current depends on substrate reactivity and tip-substrate distance.

\[I_\infty = 4nFDCr \]

- **Current enhancement due to regeneration** ⇒ \(I > I_\infty \)
- **Current attenuation due to screening** ⇒ \(I < I_\infty \)

Sotiris Sotiropoulos, Chemistry Department, Aristotle University of Thessaloniki
Scanning Electrochemical Microscopy (SECM)

SECM setup

Sotiris Sotiropoulos, Chemistry Department, Aristotle University of Thessaloniki
Scanning Electrochemical Microscopy (SECM)

APPLICATIONS OF SECM

- Topographic information over samples of uniform electrochemical activity (conductors of uniform electrocatalytic activity or insulators).

- Mapping of electrocatalytic activity over relatively flat samples.

- Mapping of enzymatic activity over relatively flat samples.

- Mapping of membrane porosity for relatively flat membranes.

- Substrate surface modification by tip-induced electrochemical reactions.

A.J. Bard and M. V. Mirkin (editors),

Sotiris Sotiropoulos, Chemistry Department, Aristotle University of Thessaloniki
Scanning Electrochemical Microscopy (SECM)

EXAMPLES OF SECM APPLICATIONS

Topography of a human breast cell (insulator)

Constant current SECM image of a 10 µm × 10 µm portion of a human breast cell using a 120 nm radius tip and optical micrograph of the same cell.

Constant height SECM operation and image of a 1 µm × 1 µm portion of a human breast cell using a 47 nm radius tip.

Sotiris Sotiropoulos, Chemistry Department, Aristotle University of Thessaloniki
Scanning Electrochemical Microscopy (SECM)

EXAMPLES OF SECM APPLICATIONS
Mapping of electrocatalytic activity of substrates

(A) 80 µm × 80 µm AFM image of a disk-like region of boron-doped diamond. (B) SECM image over such a region with a Pt 2.5 µm microdisc.

Array of metal mixture catalytic spots on a glassy carbon substrate.

(1) SEM of the array (2) - (3) SECM images with substrate biased at 0.2 V and 0.75 V tested for oxygen reduction.

Sotiris Sotiropoulos, Chemistry Department, Aristotle University of Thessaloniki
EXAMPLES OF SECM APPLICATIONS

Mapping of enzyme catalytic centers

SECM image over an immobilized glucoze oxidase enzyme probing catalytic activity for glucose oxidation producing H_2O_2 which is detected by its oxidation at a **Pt 25 μm microdisc**.

Sotiris Sotiropoulos, Chemistry Department, Aristotle University of Thessaloniki
Scanning Electrochemical Microscopy (SECM)

EXAMPLES OF SECM APPLICATIONS

Surface modification

(A) Scheme of SECM metal deposition: metal ions are reduced at the tip and oxidation occurs at the substrate/polymer interface.

(B) SEM of a pattern of silver lines deposited in a Nafion® film.

Sotiris Sotiropoulos, Chemistry Department, Aristotle University of Thessaloniki
Scanning Electrochemical Microscopy (SECM)

DIFFERENCES BETWEEN SECM AND EC-STM

(SCANNING ELECTROCHEMICAL MICROSCOPE AND ELECTROCHEMICAL SCANNING TUNNELING MICROSCOPE)

• **Different principle:** faradaic (SECM) vs. tunneling (STM) current.

• **Different resolution:** no less than tens of nm for SECM; less than nm possible for STM.

• **Substrate versatility:** SECM can picture insulators too; STM cannot.

• **Information provided:** SECM can map surface reactivity too; STM can only provide topography.

• **Specifications and cost:** Despite setup similarities (piezo-positioner, bipotentiostat, feedback electronics) lower fidelity is required for SECM components and its tips are easier to fabricate and more robust, rendering it much cheaper.

Sotiris Sotiropoulos, Chemistry Department, Aristotle University of Thessaloniki